
Main Library, Open Access 

Open Access: 
Achievements & Challenges 
 Christian Gutknecht, Main Library University of Zurich 
 
 

Opendata.ch 2012 Conference 
28.6.2012, Zurich 

www.oai.uzh.ch 

(except University Logo) 



Main Library, Open Access 

http://www.guardian.co.uk/science/2012/jun/08/open-access-research-inevitable-nature-editor 

2 

http://www.guardian.co.uk/science/2012/jun/08/open-access-research-inevitable-nature-editor


Main Library, Open Access 

http://www.guardian.co.uk/science/2012/jun/19/open-access-academic-publishing-finch-report 

3 

http://www.guardian.co.uk/science/2012/jun/19/open-access-academic-publishing-finch-report


Main Library, Open Access 

http://www.guardian.co.uk/science/2012/apr/24/harvard-university-journal-publishers-prices 

4 

http://www.guardian.co.uk/science/2012/apr/24/harvard-university-journal-publishers-prices


Main Library, Open Access 

Open Access via Repository 
(Green Road) 

Publisher researchers 

publish a paper 
 
in a traditional journal 

Publisher

from other researchers in the field were denied [16]. These results

do not include other data practices which may also negatively

affect the progress of science, such as significant delays in the

fulfillment of requests, refusals to publicly present research

findings, and the failure to discuss research with others [16].

Disciplines or subdisciplines have their own culture of data-

sharing. Some do better (geophysics, biodiversity, and astronomy)

than others [17].

Individual Choice vs. Institutional Policies

The extent to which researchers share or withhold data is not

primarily an individual choice. Underlying policies and practices

have great influence on encouraging or inhibiting data sharing.

Several researchers who failed to share their data in the study by

Savage and Vickers, et al., claimed that it would take too much

work to provide raw data. The authors came to the conclusion that

researchers often fail to develop clear, well-annotated datasets to

accompany their research (i.e., metadata), and may lose access and

understanding of the original dataset over time. Vickers, et al.

believe that a policy that would require authors to submit datasets

to journals or public repositories at the time of publication would

help to prevent this occurrence [11]. PARSE Insight, a project

concerned with the preservation of digital information in research,

reported from a survey of data managers that 64% claimed their

organizations had policies and procedures in place to determine

what kinds of data are accepted for storage and preservation, with

specific policies for the time frame and method of submission.

Though this number constitutes a majority, 32% reported a lack of

such policies or procedures [8].
Policies and procedures sometimes serve as an active rather

than passive barrier to data sharing. Campbell et al. (2003)

reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 2. Subject discipline.

Frequency Percent

environmental sciences & ecology
475

36.1

social sciences

204
15.5

biology

181
13.7

physical sciences

158
12.0

computer science/engineering
118

9.0

other

98
7.4

atmospheric science

52
3.9

medicine

31
2.4

Total

1317
100.0

doi:10.1371/journal.pone.0021101.t002

Table 3. Data access.

Frequency Percent

An organization-specific system

351
38.5%

Long-tem Ecological Research Network
292

32.1%

Other data access

246
27.0%

A Distributed Active-Archive Center

173
19.0%

A Global Biodiversity Information Facility
73

8.0%

National Biological Information Infrastructure
70

7.7%

National Ecological Observatory Network
64

7.0%

International Long-term Ecological Research Network 58
6.4%

Taiwan Ecological Research Network

7
.8%

South African Environmental Observation Network 6
.7%

doi:10.1371/journal.pone.0021101.t003

Table 4. Data types.

Responses
Percent

Experimental

711
54.6%

Observational

632
48.5%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004

Table 1. Primary work sector.

Frequency
Percent

Academic
1058

80.5

Government
167

12.7

Commercial
34

2.6

Non-profit
35

2.7

Other

21

1.6

Total

1315

100.0
doi:10.1371/journal.pone.0021101.t001
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most important reason for data preservation. Nearly all (98%) of
participants agreed that if research is publicly funded, the results
should become public property and therefore properly preserved
[8].
This article reports the results of a survey of scientists’ current

data sharing practices and their perceptions of the barriers and
enablers of data sharing. The survey was conducted by the
research team of the National Science Foundation-funded
DataONE project. DataNet supports short- and long-term data
management and open access to data. DataONE is one of the
initially funded NSF DataNet partners. DataONE is a large scale
collaboration to develop an organization that supports the full
information lifecycle of biological, ecological, and environmental
data and tools to be used by researchers, educators, students,
decision-makers and the general public. DataONE ‘‘will ensure
the preservation and access to multi-scale, multi-discipline, and
multi-national science data’’ [9] by developing a strong cyberin-
frastructure and community engagement programs.
DataONE will (i) provide coordinated access to current data

collections; (ii) create a new global cyberinfrastructure that
contains both biological and environmental data coming from
different resources (research networks, environmental observato-
ries, individual scientists, and citizen scientists); and (iii) change the
science culture and institutions by providing education and
training, engaging citizens in science, and building global
communities of practice. In order to facilitate change of the
science culture through cyberinfrastructure for data, it is necessary
to first understand the culture of modern science and the role of
data in it.

Data Sharing
Encouraging data sharing and reuse begins with good data

practices in all phases of the data lifecycle such as generating and
collecting the data, managing the data, analyzing the data, and
sharing it. However, the data lifecycle cannot be considered
independently from research lifecycle [10], as data are an
indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 2. Subject discipline.

Frequency Percent

environmental sciences & ecology
475

36.1

social sciences

204
15.5

biology

181
13.7

physical sciences

158
12.0

computer science/engineering
118

9.0

other

98
7.4

atmospheric science

52
3.9

medicine

31
2.4

Total

1317
100.0

doi:10.1371/journal.pone.0021101.t002

Table 3. Data access.

Frequency Percent

An organization-specific system

351
38.5%

Long-tem Ecological Research Network
292

32.1%

Other data access

246
27.0%

A Distributed Active-Archive Center

173
19.0%

A Global Biodiversity Information Facility
73

8.0%

National Biological Information Infrastructure
70

7.7%

National Ecological Observatory Network
64

7.0%

International Long-term Ecological Research Network 58
6.4%

Taiwan Ecological Research Network

7
.8%

South African Environmental Observation Network 6
.7%

doi:10.1371/journal.pone.0021101.t003

Table 4. Data types.

Responses
Percent

Experimental

711
54.6%

Observational

632
48.5%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004

Table 1. Primary work sector.

Frequency
Percent

Academic
1058

80.5

Government
167

12.7

Commercial
34

2.6

Non-profit
35

2.7

Other

21

1.6

Total

1315

100.0
doi:10.1371/journal.pone.0021101.t001
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most important reason for data preservation. Nearly all (98%) of
participants agreed that if research is publicly funded, the results
should become public property and therefore properly preserved
[8].
This article reports the results of a survey of scientists’ current

data sharing practices and their perceptions of the barriers and
enablers of data sharing. The survey was conducted by the
research team of the National Science Foundation-funded
DataONE project. DataNet supports short- and long-term data
management and open access to data. DataONE is one of the
initially funded NSF DataNet partners. DataONE is a large scale
collaboration to develop an organization that supports the full
information lifecycle of biological, ecological, and environmental
data and tools to be used by researchers, educators, students,
decision-makers and the general public. DataONE ‘‘will ensure
the preservation and access to multi-scale, multi-discipline, and
multi-national science data’’ [9] by developing a strong cyberin-
frastructure and community engagement programs.
DataONE will (i) provide coordinated access to current data

collections; (ii) create a new global cyberinfrastructure that
contains both biological and environmental data coming from
different resources (research networks, environmental observato-
ries, individual scientists, and citizen scientists); and (iii) change the
science culture and institutions by providing education and
training, engaging citizens in science, and building global
communities of practice. In order to facilitate change of the
science culture through cyberinfrastructure for data, it is necessary
to first understand the culture of modern science and the role of
data in it.

Data Sharing
Encouraging data sharing and reuse begins with good data

practices in all phases of the data lifecycle such as generating and
collecting the data, managing the data, analyzing the data, and
sharing it. However, the data lifecycle cannot be considered
independently from research lifecycle [10], as data are an
indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

Table 3. Data access.

Frequency Percent

Frequency Percent

Frequency Percent

Frequency Percent

An organization-specific system

351
38.5%

An organization-specific system

351
38.5%

An organization-specific system

351
38.5%

An organization-specific system

351
38.5%

An organization-specific system

351
38.5%

An organization-specific system

351
38.5%

Long-tem Ecological Research Network
292

32.1%

Long-tem Ecological Research Network
292

32.1%

Long-tem Ecological Research Network
292

32.1%

Long-tem Ecological Research Network
292

32.1%

Long-tem Ecological Research Network
292

32.1%

Long-tem Ecological Research Network
292

32.1%

Other data access

246
27.0%

Other data access

246
27.0%

Other data access

246
27.0%

Other data access

246
27.0%

Other data access

246
27.0%

Other data access

246
27.0%

A Distributed Active-Archive Center

173
19.0%

A Distributed Active-Archive Center

173
19.0%

A Distributed Active-Archive Center

173
19.0%

A Distributed Active-Archive Center

173
19.0%

A Distributed Active-Archive Center

173
19.0%

A Distributed Active-Archive Center

173
19.0%

A Global Biodiversity Information Facility
73

8.0%

A Global Biodiversity Information Facility
73

8.0%

A Global Biodiversity Information Facility
73

8.0%

A Global Biodiversity Information Facility
73

8.0%

A Global Biodiversity Information Facility
73

8.0%

A Global Biodiversity Information Facility
73

8.0%

National Biological Information Infrastructure
70

7.7%

National Biological Information Infrastructure
70

7.7%

National Biological Information Infrastructure
70

7.7%

National Biological Information Infrastructure
70

7.7%

National Biological Information Infrastructure
70

7.7%

National Biological Information Infrastructure
70

7.7%

National Ecological Observatory Network
64

7.0%

National Ecological Observatory Network
64

7.0%

National Ecological Observatory Network
64

7.0%

National Ecological Observatory Network
64

7.0%

National Ecological Observatory Network
64

7.0%

National Ecological Observatory Network
64

7.0%

International Long-term Ecological Research Network 58
6.4%

International Long-term Ecological Research Network 58
6.4%

International Long-term Ecological Research Network 58
6.4%

International Long-term Ecological Research Network 58
6.4%

International Long-term Ecological Research Network 58
6.4%

International Long-term Ecological Research Network 58
6.4%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

Taiwan Ecological Research Network

7
.8%

South African Environmental Observation Network 6
.7%

South African Environmental Observation Network 6
.7%

South African Environmental Observation Network 6
.7%

South African Environmental Observation Network 6
.7%

South African Environmental Observation Network 6
.7%

South African Environmental Observation Network 6
.7%

doi:10.1371/journal.pone.0021101.t003

Data types.

Responses
Percent

Responses
Percent

Responses
Percent

Responses
Percent

Experimental

711
54.6%

Experimental

711
54.6%

Experimental

711
54.6%

Experimental

711
54.6%

Experimental

711
54.6%

Experimental

711
54.6%

Observational

632
48.5%

Observational

632
48.5%

Observational

632
48.5%

Observational

632
48.5%

Observational

632
48.5%

Observational

632
48.5%

Data Models

499
38.3%

Data Models

499
38.3%

Data Models

499
38.3%

Data Models

499
38.3%

Data Models

499
38.3%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Interviews

195
15.0%

Interviews

195
15.0%

Interviews

195
15.0%

Interviews

195
15.0%

Interviews

195
15.0%

Other

80

6.1%

Other

80

6.1%

Other

80

6.1%

Other

80

6.1%

Other

80

6.1%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004
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from other researchers in the field were denied [16]. These results

do not include other data practices which may also negatively

affect the progress of science, such as significant delays in the

fulfillment of requests, refusals to publicly present research

findings, and the failure to discuss research with others [16].

Disciplines or subdisciplines have their own culture of data-

sharing. Some do better (geophysics, biodiversity, and astronomy)
The extent to which researchers share or withhold data is not

primarily an individual choice. Underlying policies and practices

have great influence on encouraging or inhibiting data sharing.

Several researchers who failed to share their data in the study by

reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 4. Data types.

Experimental

711
54.6%

Experimental

711
54.6%

Observational

632
48.5%

Observational

632
48.5%

Data Models

499
38.3%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Interviews

195
15.0%

Other

80

6.1%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004
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Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject

Researchers who choose to withhold datasets often have specific
reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
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concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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decision
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d informed decision
-making. M

oreover
,

‘‘science
is becom

ing data intensiv
e and collabor

ative’’ [
1]. The

amount of
data collected

, analyz
ed, re-a

nalyzed
, and stored has

increase
d enormously due to develop

ments in computation
al

simulation
and modeling,

automated data acquisiti
on, and

communicatio
n technolo

gies [2].
Followin

g the previous
research

paradigm
s (experim

ental, theoreti
cal, and computation

al), this

new era has been called ‘‘the fourth paradigm
: data-int
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discover
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on [4].
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g access f
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from other researchers in the field were denied [16]. These results

do not include other data practices which may also negatively

affect the progress of science, such as significant delays in the

fulfillment of requests, refusals to publicly present research

findings, and the failure to discuss research with others [16].

Disciplines or subdisciplines have their own culture of data-

sharing. Some do better (geophysics, biodiversity, and astronomy)

than others [17].

Individual Choice vs. Institutional Policies

The extent to which researchers share or withhold data is not

primarily an individual choice. Underlying policies and practices

have great influence on encouraging or inhibiting data sharing.

Several researchers who failed to share their data in the study by

Savage and Vickers, et al., claimed that it would take too much

work to provide raw data. The authors came to the conclusion that

researchers often fail to develop clear, well-annotated datasets to

accompany their research (i.e., metadata), and may lose access and

understanding of the original dataset over time. Vickers, et al.

believe that a policy that would require authors to submit datasets

to journals or public repositories at the time of publication would

help to prevent this occurrence [11]. PARSE Insight, a project

concerned with the preservation of digital information in research,

reported from a survey of data managers that 64% claimed their

organizations had policies and procedures in place to determine

what kinds of data are accepted for storage and preservation, with

specific policies for the time frame and method of submission.

Though this number constitutes a majority, 32% reported a lack of

such policies or procedures [8].
Policies and procedures sometimes serve as an active rather

than passive barrier to data sharing. Campbell et al. (2003)

reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 2. Subject discipline.

Frequency Percent

environmental sciences & ecology
475

36.1

social sciences

204
15.5

biology

181
13.7

physical sciences

158
12.0

computer science/engineering
118

9.0

other

98
7.4

atmospheric science

52
3.9

medicine

31
2.4

Total

1317
100.0

doi:10.1371/journal.pone.0021101.t002

Table 3. Data access.

Frequency Percent

An organization-specific system

351
38.5%

Long-tem Ecological Research Network
292

32.1%

Other data access

246
27.0%

A Distributed Active-Archive Center

173
19.0%

A Global Biodiversity Information Facility
73

8.0%

National Biological Information Infrastructure
70

7.7%

National Ecological Observatory Network
64

7.0%

International Long-term Ecological Research Network 58
6.4%

Taiwan Ecological Research Network

7
.8%

South African Environmental Observation Network 6
.7%

doi:10.1371/journal.pone.0021101.t003

Table 4. Data types.

Responses
Percent

Experimental

711
54.6%

Observational

632
48.5%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004

Table 1. Primary work sector.

Frequency
Percent

Academic
1058

80.5

Government
167

12.7

Commercial
34

2.6

Non-profit
35

2.7

Other

21

1.6

Total

1315

100.0
doi:10.1371/journal.pone.0021101.t001
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most important reason for data preservation. Nearly all (98%) of
participants agreed that if research is publicly funded, the results
should become public property and therefore properly preserved
[8].
This article reports the results of a survey of scientists’ current

data sharing practices and their perceptions of the barriers and
enablers of data sharing. The survey was conducted by the
research team of the National Science Foundation-funded
DataONE project. DataNet supports short- and long-term data
management and open access to data. DataONE is one of the
initially funded NSF DataNet partners. DataONE is a large scale
collaboration to develop an organization that supports the full
information lifecycle of biological, ecological, and environmental
data and tools to be used by researchers, educators, students,
decision-makers and the general public. DataONE ‘‘will ensure
the preservation and access to multi-scale, multi-discipline, and
multi-national science data’’ [9] by developing a strong cyberin-
frastructure and community engagement programs.
DataONE will (i) provide coordinated access to current data

collections; (ii) create a new global cyberinfrastructure that
contains both biological and environmental data coming from
different resources (research networks, environmental observato-
ries, individual scientists, and citizen scientists); and (iii) change the
science culture and institutions by providing education and
training, engaging citizens in science, and building global
communities of practice. In order to facilitate change of the
science culture through cyberinfrastructure for data, it is necessary
to first understand the culture of modern science and the role of
data in it.

Data Sharing
Encouraging data sharing and reuse begins with good data

practices in all phases of the data lifecycle such as generating and
collecting the data, managing the data, analyzing the data, and
sharing it. However, the data lifecycle cannot be considered
independently from research lifecycle [10], as data are an
indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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Introdu
ction

Data ar
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und data are

critical a
s
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decision
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d informed decision
-making. M

oreover
,

‘‘science
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ing data intensiv
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ative’’ [
1]. The

amount of
data collected

, analyz
ed, re-a

nalyzed
, and stored has
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d enormously due to develop

ments in computation
al

simulation
and modeling,

automated data acquisiti
on, and

communicatio
n technolo

gies [2].
Followin

g the previous
research

paradigm
s (experim

ental, theoreti
cal, and computation

al), this

new era has been called ‘‘the fourth paradigm
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,
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e science
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on [4].
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g access f
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t interpre

tations
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research
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][7]
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researchers 

from other researchers in the field were denied [16]. These results

do not include other data practices which may also negatively

affect the progress of science, such as significant delays in the

fulfillment of requests, refusals to publicly present research

findings, and the failure to discuss research with others [16].

Disciplines or subdisciplines have their own culture of data-

sharing. Some do better (geophysics, biodiversity, and astronomy)

than others [17].

Individual Choice vs. Institutional Policies

The extent to which researchers share or withhold data is not

primarily an individual choice. Underlying policies and practices

have great influence on encouraging or inhibiting data sharing.

Several researchers who failed to share their data in the study by

Savage and Vickers, et al., claimed that it would take too much

work to provide raw data. The authors came to the conclusion that

researchers often fail to develop clear, well-annotated datasets to

accompany their research (i.e., metadata), and may lose access and

understanding of the original dataset over time. Vickers, et al.

believe that a policy that would require authors to submit datasets

to journals or public repositories at the time of publication would

help to prevent this occurrence [11]. PARSE Insight, a project

concerned with the preservation of digital information in research,

reported from a survey of data managers that 64% claimed their

organizations had policies and procedures in place to determine

what kinds of data are accepted for storage and preservation, with

specific policies for the time frame and method of submission.

Though this number constitutes a majority, 32% reported a lack of

such policies or procedures [8].
Policies and procedures sometimes serve as an active rather

than passive barrier to data sharing. Campbell et al. (2003)

reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 2. Subject discipline.

Frequency Percent

environmental sciences & ecology
475

36.1

social sciences

204
15.5

biology

181
13.7

physical sciences

158
12.0

computer science/engineering
118

9.0

other

98
7.4

atmospheric science

52
3.9

medicine

31
2.4

Total

1317
100.0

doi:10.1371/journal.pone.0021101.t002

Table 3. Data access.

Frequency Percent

An organization-specific system

351
38.5%

Long-tem Ecological Research Network
292

32.1%

Other data access

246
27.0%

A Distributed Active-Archive Center

173
19.0%

A Global Biodiversity Information Facility
73

8.0%

National Biological Information Infrastructure
70

7.7%

National Ecological Observatory Network
64

7.0%

International Long-term Ecological Research Network 58
6.4%

Taiwan Ecological Research Network

7
.8%

South African Environmental Observation Network 6
.7%

doi:10.1371/journal.pone.0021101.t003

Table 4. Data types.

Responses
Percent

Experimental

711
54.6%

Observational

632
48.5%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004

Table 1. Primary work sector.

Frequency
Percent

Academic
1058

80.5

Government
167

12.7

Commercial
34

2.6

Non-profit
35

2.7

Other

21

1.6

Total

1315

100.0
doi:10.1371/journal.pone.0021101.t001
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from other researchers in the field were denied [16]. These results

do not include other data practices which may also negatively

affect the progress of science, such as significant delays in the

fulfillment of requests, refusals to publicly present research

findings, and the failure to discuss research with others [16].

Disciplines or subdisciplines have their own culture of data-

sharing. Some do better (geophysics, biodiversity, and astronomy)
The extent to which researchers share or withhold data is not

primarily an individual choice. Underlying policies and practices

have great influence on encouraging or inhibiting data sharing.

Several researchers who failed to share their data in the study by

reported that government agencies often have strict policies about

secrecy for some publicly funded research. In a survey of 79

technology transfer officers in American universities, 93%

reported that their institution had a formal policy that required

researchers to file an invention disclosure before seeking to

commercialize research results. About one-half of the participants

reported institutional policies that prohibited the dissemination of

biomaterials without a material transfer agreement, which have

become so complex and demanding that they inhibit sharing [15].

Increasing the efficiency of current data practices in a world of

increased data challenges requires a new comprehensive approach

to data policy and practice. This approach would seek to avoid

data loss, data deluge, poor data practices, scattered data, etc., and

thus make better use of (public) funds and resources. NSF recently

took action by announcing that all proposals to NSF involving

data collection must include a data management plan [1] so that

‘‘digital data are routinely deposited in well-documented form, are

regularly and easily consulted and analyzed by specialist and non-

specialist alike, are openly accessible while suitably protected, and

are reliably preserved’’ [18]. Similarly, the European Commission

invited its member states to develop policies to implement access,

dissemination, and preservation for scientific knowledge and data

[5] [19].

Table 4. Data types.

Experimental

711
54.6%

Experimental

711
54.6%

Observational

632
48.5%

Observational

632
48.5%

Data Models

499
38.3%

Data Models

499
38.3%

Biotic Surveys

446
34.3%

Biotic Surveys

446
34.3%

Abiotic Surveys
442

33.9%

Abiotic Surveys
442

33.9%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Abiotic
358

27.5%

Remote-Sensed Biotic
264

20.3%

Remote-Sensed Biotic
264

20.3%

Social Science Surveys
251

19.3%

Social Science Surveys
251

19.3%

Interviews

195
15.0%

Interviews

195
15.0%

Other

80

6.1%

Other

80

6.1%

doi:10.1371/journal.pone.0021101.t004
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most important reason for data preservation. Nearly all (98%) of
participants agreed that if research is publicly funded, the results
should become public property and therefore properly preserved
[8].
This article reports the results of a survey of scientists’ current

data sharing practices and their perceptions of the barriers and
enablers of data sharing. The survey was conducted by the
research team of the National Science Foundation-funded
DataONE project. DataNet supports short- and long-term data
management and open access to data. DataONE is one of the
initially funded NSF DataNet partners. DataONE is a large scale
collaboration to develop an organization that supports the full
information lifecycle of biological, ecological, and environmental
data and tools to be used by researchers, educators, students,
decision-makers and the general public. DataONE ‘‘will ensure
the preservation and access to multi-scale, multi-discipline, and
multi-national science data’’ [9] by developing a strong cyberin-
frastructure and community engagement programs.
DataONE will (i) provide coordinated access to current data

collections; (ii) create a new global cyberinfrastructure that
contains both biological and environmental data coming from
different resources (research networks, environmental observato-
ries, individual scientists, and citizen scientists); and (iii) change the
science culture and institutions by providing education and
training, engaging citizens in science, and building global
communities of practice. In order to facilitate change of the
science culture through cyberinfrastructure for data, it is necessary
to first understand the culture of modern science and the role of
data in it.

Data Sharing
Encouraging data sharing and reuse begins with good data

practices in all phases of the data lifecycle such as generating and
collecting the data, managing the data, analyzing the data, and
sharing it. However, the data lifecycle cannot be considered
independently from research lifecycle [10], as data are an
indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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most important reason for data preservation. Nearly all (98%) of
participants agreed that if research is publicly funded, the results
should become public property and therefore properly preserved
[8].
This article reports the results of a survey of scientists’ current

data sharing practices and their perceptions of the barriers and
enablers of data sharing. The survey was conducted by the
research team of the National Science Foundation-funded
DataONE project. DataNet supports short- and long-term data
management and open access to data. DataONE is one of the
initially funded NSF DataNet partners. DataONE is a large scale
collaboration to develop an organization that supports the full
information lifecycle of biological, ecological, and environmental
data and tools to be used by researchers, educators, students,
decision-makers and the general public. DataONE ‘‘will ensure
the preservation and access to multi-scale, multi-discipline, and
multi-national science data’’ [9] by developing a strong cyberin-
frastructure and community engagement programs.
DataONE will (i) provide coordinated access to current data

collections; (ii) create a new global cyberinfrastructure that
contains both biological and environmental data coming from
different resources (research networks, environmental observato-
ries, individual scientists, and citizen scientists); and (iii) change the
science culture and institutions by providing education and
training, engaging citizens in science, and building global
communities of practice. In order to facilitate change of the
science culture through cyberinfrastructure for data, it is necessary
to first understand the culture of modern science and the role of
data in it.

Data Sharing
Encouraging data sharing and reuse begins with good data

practices in all phases of the data lifecycle such as generating and
collecting the data, managing the data, analyzing the data, and
sharing it. However, the data lifecycle cannot be considered
independently from research lifecycle [10], as data are an
indispensible element of scientific research. (See Figure 1.)
The specific costs of handling supplementary materials such as

datasets are not well documented. In a recent survey, only author
fees and journal subscription fees were mentioned as current
funding sources for supplementary materials in journals. Partic-
ipants in the survey suggested other potential sources for funding,
in particular government funding, support from learned societies,
and publishers [11].

Data Sharing/Withholding Practices
Data sharing is important. According to a study done by

Publishing Research Consortium (PRC) in 2010 with 3823
respondents, access to datasets, data models, and algorithms &
programs was ranked important or highly important; however,
only 38% of them felt that they were easily accessible [12]. In
addition, it was the lowest among the other information types
(some of them were research articles in journals, reference works,
technical information, patent information, etc.). Several previous
surveys have explored the benefits and barriers of sharing data
[13] and the extent to which researchers share or withhold data.
Results seem to suggest that current sharing practices are minimal,
although the amount of data sharing varies among different fields.
Some journals have specific guidelines which require authors to
share their data with other researchers. However, the extent to
which these guidelines are carried out remains largely untested.
Savage and Vickers requested data from ten researchers who had
published articles in PLoS journals, which have specific data
sharing policies. Only one author sent an original dataset [14].

Although drawn from a small sample of researchers, these results
strongly suggest that journal policies which require data sharing do
not necessarily lead authors to make their datasets readily available
to other researchers. The amount of data sharing or data hoarding
also appears to vary according to the researcher’s subject
discipline.
Researchers who choose to withhold datasets often have specific

reasons for doing so. Savage and Vickers noted reasons that
include concerns about patient privacy (for medical fields),
concerns about future publishing opportunities, and the desire to
retain exclusive rights to data that had taken many years to
produce [14]. In Campbell’s study of data sharing in genetics, the
top reasons cited for withholding data were the amount of effort
involved in accessing and sharing datasets and the protection of a
colleague’s or their own ability to publish [15]. The decision to
share or withhold data is often dependent upon the point of time
in the publishing process at which the request is made. Campbell
(2003) reported that nearly all (98.7%) of the technology transfer
officers surveyed agreed that academic scientists should freely
share data with other scientists after publication, while only 30.5%
agreed that scientists should share data and materials before
publication. The vast majority also believed that scientists should
be more careful when sharing data with industry than with other
academics [15]. The PARSE Insight survey indicated that
researchers who are reluctant to share data with others reported
major concerns with legal issues, misuse of data, and incompatible
data types [8]. In a survey of geneticists and other life scientists,
Campbell et al., found that withholding data may be more
common in genetics and related fields. Reasons may include the
increased scientific competitiveness of the field, as well as the
opportunities for commercial applications. Respondents of the
survey estimated that ten percent of their requests for information

Figure 1. Joint Information Systems Committee (JISC), Stages
of the research and data lifecycle.
doi:10.1371/journal.pone.0021101.g001
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Cellular/Molecular

Src-Family Kinases Stabilize the Neuromuscular Synapse In
Vivo via Protein Interactions, Phosphorylation, and
Cytoskeletal Linkage of Acetylcholine Receptors

Gayathri Sadasivam,1 Raffaella Willmann,1 Shuo Lin,2 Susanne Erb-Vögtli,1 Xian Chu Kong,2 Markus A. Rüegg,2 and
Christian Fuhrer1

1Department of Neurochemistry, Brain Research Institute, University of Zürich, CH-8057 Zürich, Switzerland, and 2Biozentrum, University of Basel,
CH-4056 Basel, Switzerland

Postnatal stabilization and maturation of the postsynaptic membrane are important for development and function of the neuromuscular
junction (NMJ), but the underlying mechanisms remain poorly characterized. We examined the role of Src-family kinases (SFKs) in vivo.
Electroporation of kinase-inactive Src constructs into soleus muscles of adult mice caused NMJ disassembly: acetylcholine receptor
(AChR)-rich areas became fragmented; the topology of nerve terminal, AChRs, and synaptic nuclei was disturbed; and occasionally
nerves started to sprout. Electroporation of kinase-overactive Src produced similar but milder effects. We studied the mechanism of SFK
action using cultured src!/!;fyn!/! myotubes, focusing on clustering of postsynaptic proteins, their interaction with AChRs, and AChR
phosphorylation. Rapsyn and the utrophin-glycoprotein complex were recruited normally into AChR-containing clusters by agrin in
src!/!;fyn!/! myotubes. But after agrin withdrawal, clusters of these proteins disappeared rapidly in parallel with AChRs, revealing that
SFKs are of general importance in postsynaptic stability. At the same time, AChR interaction with rapsyn and dystrobrevin and AChR
phosphorylation decreased after agrin withdrawal from mutant myotubes. Unexpectedly, levels of rapsyn protein were increased in
src!/!;fyn!/! myotubes, whereas rapsyn– cytoskeleton interactions were unaffected. The overall cytoskeletal link of AChRs was weak
but still strengthened by agrin in mutant cells, consistent with the normal formation but decreased stability of AChR clusters. These data
show that correctly balanced activity of SFKs is critical in maintaining adult NMJs in vivo. SFKs hold the postsynaptic apparatus together
through stabilization of AChR–rapsyn interaction and AChR phosphorylation. In addition, SFKs control rapsyn levels and AChR-
cytoskeletal linkage.

Key words: Src; acetylcholine receptor; neuromuscular synapse; agrin; tyrosine phosphorylation; postsynaptic membrane

Introduction
Neuromuscular junctions (NMJs) develop in a series of steps in
which the postsynaptic membrane first forms by concentrating
acetylcholine receptors (AChRs) and associated proteins in a flat
topology. Postnatally, NMJs mature and AChRs get arranged at
the crests of postjunctional folds. Concomitantly, all but one
axon withdrew, paralleled by destabilization of adjacent AChRs
(Sanes and Lichtman, 2001). Maturation and stabilization of
AChR clusters ensure proper synaptic development, which forms
the basis for nerve-evoked muscle contractibility.

Much is known about the molecular pathways that first form
NMJs. Neural agrin, by activating the muscle-specific kinase
(MuSK), is crucial by triggering downstream cascades (for re-

view, see Bezakova and Ruegg, 2003; Luo et al., 2003). Central in
these is rapsyn, the main AChR-anchoring protein mediating
clustering (Gautam et al., 1995). Rapsyn increasingly binds to
AChRs in response to agrin (Moransard et al., 2003), mediates
agrin-induced phosphorylation of the AChR ! and " subunits
(Mittaud et al., 2001), and links the receptor to !-dystroglycan, a
component of the postsynaptic utrophin-glycoprotein complex
(UGC) (Cartaud et al., 1998; Bartoli et al., 2001). In clustering,
AChRs become immobilized and less detergent extractable, both
in agrin-treated myotubes (Prives et al., 1982; Stya and Axelrod,
1983; Podleski and Salpeter, 1988) and developing NMJs
(Dennis, 1981; Slater, 1982). The players in this cytoskeletal link
remain uncertain. Agrin-induced phosphorylation of AChR ! is
involved (Borges and Ferns, 2001) and can occur through Abl-
and Src-family kinases (SFKs) (Finn et al., 2003; Mittaud et al.,
2004).

Much less is known about the mechanisms that mature NMJs
and stabilize AChR clusters postnatally. Although MuSK is re-
quired (Kong et al., 2004), some of these pathways may not be
essential in initial NMJ formation (Willmann and Fuhrer, 2002),
as illustrated by mice lacking utrophin and dystrophin or the
UGC components #-dystrobrevin or dystroglycan (Grady et al.,
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which the postsynaptic membrane first forms by concentrating
acetylcholine receptors (AChRs) and associated proteins in a flat
topology. Postnatally, NMJs mature and AChRs get arranged at
the crests of postjunctional folds. Concomitantly, all but one
axon withdrew, paralleled by destabilization of adjacent AChRs

view, see Bezakova and Ruegg, 2003; Luo et al., 2003). Central in
these is rapsyn, the main AChR-anchoring protein mediating
clustering (Gautam et al., 1995). Rapsyn increasingly binds to
AChRs in response to agrin (Moransard et al., 2003), mediates
agrin-induced phosphorylation of the AChR
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Postnatal stabilization and maturation of the postsynaptic membrane are important for development and function of the neuromuscular
junction (NMJ), but the underlying mechanisms remain poorly characterized. We examined the role of Src-family kinases (SFKs)
Electroporation of kinase-inactive Src constructs into soleus muscles of adult mice caused NMJ disassembly: acetylcholine receptor
(AChR)-rich areas became fragmented; the topology of nerve terminal, AChRs, and synaptic nuclei was disturbed; and occasionally
nerves started to sprout. Electroporation of kinase-overactive Src produced similar but milder effects. We studied the mechanism of SFK

;fyn!/! myotubes, focusing on clustering of postsynaptic proteins, their interaction with AChRs, and AChR
phosphorylation. Rapsyn and the utrophin-glycoprotein complex were recruited normally into AChR-containing clusters by agrin in

myotubes. But after agrin withdrawal, clusters of these proteins disappeared rapidly in parallel with AChRs, revealing that
SFKs are of general importance in postsynaptic stability. At the same time, AChR interaction with rapsyn and dystrobrevin and AChR
phosphorylation decreased after agrin withdrawal from mutant myotubes. Unexpectedly, levels of rapsyn protein were increased in

myotubes, whereas rapsyn– cytoskeleton interactions were unaffected. The overall cytoskeletal link of AChRs was weak
but still strengthened by agrin in mutant cells, consistent with the normal formation but decreased stability of AChR clusters. These data
show that correctly balanced activity of SFKs is critical in maintaining adult NMJs in vivo. SFKs hold the postsynaptic apparatus together
through stabilization of AChR–rapsyn interaction and AChR phosphorylation. In addition, SFKs control rapsyn levels and AChR-

Src; acetylcholine receptor; neuromuscular synapse; agrin; tyrosine phosphorylation; postsynaptic membrane

Neuromuscular junctions (NMJs) develop in a series of steps in
which the postsynaptic membrane first forms by concentrating
acetylcholine receptors (AChRs) and associated proteins in a flat
topology. Postnatally, NMJs mature and AChRs get arranged at
the crests of postjunctional folds. Concomitantly, all but one

view, see Bezakova and Ruegg, 2003; Luo et al., 2003). Central in
these is rapsyn, the main AChR-anchoring protein mediating
clustering (Gautam et al., 1995). Rapsyn increasingly binds to
AChRs in response to agrin (Moransard et al., 2003), mediates
agrin-induced phosphorylation of the AChR
(Mittaud et al., 2001), and links the receptor to
component of the postsynaptic utrophin-glycoprotein complex

Gayathri Sadasivam,
Christian Fuhrer1

1Department of Neurochemistry, Brain Research Institute, University of Zu
CH-4056 Basel, Switzerland

Postnatal stabilization and maturation of the postsynaptic membrane are important for development and function of the neuromuscular
junction (NMJ), but the underlying mechanisms remain poorly characterized. We examined the role of Src-family kinases (SFKs)
Electroporation of kinase-inactive Src constructs into soleus muscles of adult mice caused NMJ disassembly: acetylcholine receptor
(AChR)-rich areas became fragmented; the topology of nerve terminal, AChRs, and synaptic nuclei was disturbed; and occasionally
nerves started to sprout. Electroporation of kinase-overactive Src produced similar but milder effects. We studied the mechanism of SFK
action using cultured
phosphorylation. Rapsyn and the utrophin-glycoprotein complex were recruited normally into AChR-containing clusters by agrin in
src!/!;fyn!/! myotubes. But after agrin withdrawal, clusters of these proteins disappeared rapidly in parallel with AChRs, revealing that
SFKs are of general importance in postsynaptic stability. At the same time, AChR interaction with rapsyn and dystrobrevin and AChR
phosphorylation decreased after agrin withdrawal from mutant myotubes. Unexpectedly, levels of rapsyn protein were increased in
src!/!;fyn!/! myotubes, whereas rapsyn– cytoskeleton interactions were unaffected. The overall cytoskeletal link of AChRs was weak
but still strengthened by agrin in mutant cells, consistent with the normal formation but decreased stability of AChR clusters. These data
show that correctly balanced activity of SFKs is critical in maintaining adult NMJs
through stabilization of AChR–rapsyn interaction and AChR phosphorylation. In addition, SFKs control rapsyn levels and AChR-
cytoskeletal linkage.
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Introduction
Neuromuscular junctions (NMJs) develop in a series of steps in
which the postsynaptic membrane first forms by concentrating
acetylcholine receptors (AChRs) and associated proteins in a flat
topology. Postnatally, NMJs mature and AChRs get arranged at
the crests of postjunctional folds. Concomitantly, all but one
axon withdrew, paralleled by destabilization of adjacent AChRs
(Sanes and Lichtman, 2001). Maturation and stabilization of
AChR clusters ensure proper synaptic development, which forms
the basis for nerve-evoked muscle contractibility.

Much is known about the molecular pathways that first form
NMJs. Neural agrin, by activating the muscle-specific kinase
(MuSK), is crucial by triggering downstream cascades (for re-
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DOI:10.1523/JNEUROSCI.2103-05.2005
Copyright © 2005 Society for Neuroscience 0270-6474/05/2510479-15$15.00/0

Abbreviated title: Src action in postsynaptic stabilization 

ann*, Shuo Lin§, Susanne Erb-Vögtli*, Xian Chu Kong§, 

Institute, University of Zürich, 

-8057 Zürich, Switzerland 

lbergstrasse 70, CH-4056 Basel, Switzerland 

, Brain Research Institute, University of Zürich, 

zerland. Tel.: +41 44 635 33 10. Fax: +41 44 635 

cular synapse, agrin, tyrosine-phosphorylation, 

Höchli and Dr. Anne Greet Bittermann from the 

of Zürich for their excellent technical 

was supported by the Eric Slack-Gyr 

tional Science Foundation, the Swiss Foundation 

Zürich Neuroscience Center (to C.F.).  

1

manuscript (Post-Print) 

Postnatal stabilization and maturation of the postsynaptic membrane are important for development and function of the neuromuscular
junction (NMJ), but the underlying mechanisms remain poorly characterized. We examined the role of Src-family kinases (SFKs)

Sharing a  
non-final version? 

No Way!! 

Image: Charles Le Brun, 1760 
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Main Library, Open Access 

Assumed conflicts with publishers and editors 

„ Ich fürchte schlicht Komplikationen mit den jeweiligen 
Herausgebern, die ich ja nicht gefragt habe. Ein gutes 
Verhältnis zu denen ist mir aber wichtig, und das möchte ich 
nicht aufs Spiel setzen.  
 
Seminarleiter, April 2012 
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Unawareness of the problems (eg. prices) 
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Academic evaluation and reputation system  
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No time for Open Access 

Photo by Timm Suess 
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No interest & Ignorance of guidelines 

„ Danke für Ihre freundliche Frage. Ich verzichte auf die 
Präsentation in ZORA.  
Danke und mit den besten Grüssen  
Professorin, März 2012 
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Open Access Funding at the University of Zurich 
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+  
Open Access Publishing Fund 

for social sciences and humanities 
 

 

Memberships 

http://www.oai.uzh.ch/en/at-the-uzh/funding/ 
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BioMed Central – 220 Open Access Journals 

http://dx.doi.org/10.1186/1756-3305-5-85 
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Number of BioMed Central publications in ZORA 

0 3 5 13 19 21 25 

48 

92 85 

127 

162 

12 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

28 



Main Library, Open Access 

Year 2011 
•! Open Access funding:  162‘000 CHF 
 

•! Journal subscriptions:  4‘061‘000 CHF 
(only Main Library) 

Open Access funding vs. Journal subscriptions 

Jahresbericht 2011 der Haupbibliothek Universität Zürich 
Images: Fly by Domini Li, Wellcome Images, B0004872, Elephant:  Meyers Konversationslexikon 
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Challenge: Who can do what? 

Researcher 

University 

Libraries Publisher 

Funder 
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Who is doing the coordination? 

Researcher 

University 

Libraries Publisher 

Funder 
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European Commisson 
 
Main Library University of Zurich is on of 41 project partners 
in the EU-Project: 

 
Open Access and Open Science expected to be a key part for the upcoming 
Horizon 2020 research program 

http://www.openaire.eu/en/open-access/country-information/switzerland 
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SCOAP3 
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Summary 

•  Open Access is a proven and solid business model 
•  It works for top journals 
•  Open Access is growing slowly, but constantly 

•  100% Open Access is not expected to cost less, but there is added value. 

•  … Open Access to research data is an upcoming topic 
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BACKUP-SLIDES 
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http://gowers.wordpress.com/2012/01/21/elsevier-my-part-in-its-downfall/ 
 

Publications

Data

Funding

€
Linked Research

?

API

Supporting Open Science in Europe

Who bene�  ts from OpenAIRE?
 EU researchers who access, deposit and link to 
research output 

National Open Access initiatives 

Repository managers 

Policy makers and funders who monitor funded work

Publishers who wish to raise visibility of output 

 Potential data providers who want to explore linking 
up their research

What is OpenAIRE?
  A Participatory European Open Access infrastructure to 
manage scientifi c publications and associated information 
via repository networks

Harvests and indexes FP7 Open Access publications

 Harvests subsets of related data, and other contextual 
information, cross-linking them to demonstrate Enhanced 
Publications

The OpenAIRE portal provides a suite of services 

 - deposit and access
 - guidelines and a helpdesk

 OpenAIRE runs a series of workshops, and produces 
reports on Open Access issues

Why is OpenAIRE important?    
 By facilitating Open Science and Open Access, OpenAIRE 
allows scientists to access, reuse and enhance and research 
output

 OpenAIRE provides a cross-discipline support service for 
European Scientists 

Tools such as publication usage statistics 

OpenAIRE is based on

 - versatile technology and innovative research
 -  European outreach effort which advocates 

Open Access

Who is OpenAIRE?
 OpenAIRE is an FP7 funded project, now in its second 
phase of funding until May 2014

 41 project partners include 3 scientifi c communities: 
EBI, DANS and BADC

 Collaboration with  EuroCRIS, EUDAT, DataCite, COAR, 
LIBER, SPARC Europe

Project Coordinator: 
Mike Hatzopoulos, mike@di.uoa.gr

Services

Supports researchers 

and third-parties to 

search, access, and 

reuse research 

output

Infrastructure

OpenAIRE gathers 

research output from repo-

sitory network, identifying 

associated links and 

enabling enhanced 

publications

Research

Repositories

 link to OpenAIRE: 

publications, data, 

funding 

information

Austria (University of Wien)
Belgium (University of Gent)
Bulgaria (Bulgarian Academy of Sciences)
Croatia (Ruder Boskovic Institute)
Cyprus (University of Cyprus)
Czech Republic (Technical University of Ostrava)
Denmark (Technical University of Denmark)
Estonia (University of Tartu)
Finland (University of Helsinki)

France (Couperin)
Germany (University of Konstanz)
Greece (National Documentation Center)
Hungary (HUNOR)
Iceland Landspitali (University Hostpital)
Italy (CASPUR)
Ireland (Trinity College)
Latvia (University of Latvia)
Lithuania (Kaunas Technical University)

Luxemburg (University of Luxemburg)
Malta (Malta Council for Science & Technology 
and University of Malta)
Netherlands (Utrecht University)
Norway (University of Tromsoe)
Poland (ICM ñ University of Warsaw)
Portugal (University of Minho)
Romania (Kosson)
Slovakia (University Library of Bratislava)

Slovenia (University of Ljubljana)
Spain (Spanish Foundation for Science 
& Technology)
Sweden (National Library of Sweden)
Switzerland (University of Zurich) 
Turkey (Izmir Institute of Technology)
UK (University of Nottingham)

Funded by the 
European Union

Participating countries Contact & Info

Visit the OpenAIRE Portal 
http://www.openaire.eu

Follow us on Twitter
http://twitter.com/OpenAire_eu

»Modern science needs the free fl ow of knowledge … in an e-infrastructure 
          that is open across national borders, disciplines and scientifi c 
               communities«  Neelie Kroes (European Commission, 2012)
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Coordination of Libraries? 

A possible explanation is that to do something about the situation 
requires coordinated action. Even if one library refuses to 
subscribe to Elsevier journals, plenty of others will feel that they 
can’t refuse, and Elsevier won’t mind too much. But if all libraries 
were prepared to club together and negotiate jointly, doing a kind 
of reverse bundling — accept this deal or none of us will subscribe 
to any of your journals — then Elsevier’s profits (which are huge, 
by the way) would be genuinely threatened. However, it seems 
unlikely that any such massive coordination between libraries will 
ever take place. 

 
Timothy Gowers, Mathematician, Cambridge University 

„

http://gowers.wordpress.com/2012/01/21/elsevier-my-part-in-its-downfall/ 
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Van Noorden, Richard (2012) Nature 486, 302–303, http://dx.doi.org/10.1038/486302a 
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PLOS: Public Library of Science 

http://dx.doi.org/10.1371/journal.pone.0000308 
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